
Sports Med 2005; 35 (9): 757-777REVIEW ARTICLE 0112-1642/05/0009-0757/$34.95/0

 2005 Adis Data Information BV. All rights reserved.

Multiple Sprint Work
Physiological Responses, Mechanisms of Fatigue and the
Influence of Aerobic Fitness

Mark Glaister

School of Human Sciences, St Mary’s College, a College of the University of Surrey, Strawberry
Hill, Twickenham, UK

Contents
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757
1. Activity Profiles of Multiple Sprint Sports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758
2. Physiological Demands of Multiple Sprint Sports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758
3. The Energetics of Brief Maximal Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759

3.1 Adenosine Triphosphate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759
3.2 Phosphocreatine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760
3.3 Anaerobic Glycolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760
3.4 Aerobic Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760
3.5 The Adenylate Kinase Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761

4. The Physiology of Multiple Sprint Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
4.1 Anaerobic Energy Provision During Multiple Sprint Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761

4.1.1 Phosphocreatine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
4.1.2 Glycolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762

4.2 Aerobic Energy Provision During Multiple Sprint Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764
5. Fatigue During Multiple Sprint Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765

5.1 Mechanisms of Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766
5.2 Energy Metabolism and Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766

5.2.1 Phosphocreatine Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766
5.2.2 Glycogen Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766

5.3 Metabolite Accumulation and Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
5.3.1 Acidosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
5.3.2 Inorganic Phosphate Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
6. The Influence of Oxygen Availability on Multiple Sprint Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769

6.1 Endurance Training and On-Transient Oxygen Uptake Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
6.2 Endurance Training and Phosphocreatine Recovery Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
6.3 Endurance Training and Lactate Clearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771
6.4 Endurance Training and Inorganic Phosphate Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771
6.5 Endurance Training and Multiple Sprint Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771

7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772

The activity patterns of many sports (e.g. badminton, basketball, soccer andAbstract
squash) are intermittent in nature, consisting of repeated bouts of brief (≤6-sec-
ond) maximal/near-maximal work interspersed with relatively short (≤60-second)
moderate/low-intensity recovery periods. Although this is a general description of
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the complex activity patterns experienced in such events, it currently provides the
best means of directly assessing the physiological response to this type of
exercise. During a single short (5- to 6-second) sprint, adenosine triphosphate
(ATP) is resynthesised predominantly from anaerobic sources (phosphocreatine
[PCr] degradation and glycolysis), with a small (<10%) contribution from aerobic
metabolism. During recovery, oxygen uptake (V̇O2) remains elevated to restore
homeostasis via processes such as the replenishment of tissue oxygen stores, the
resynthesis of PCr, the metabolism of lactate, and the removal of accumulated
intracellular inorganic phosphate (Pi). If recovery periods are relatively short,
V̇O2 remains elevated prior to subsequent sprints and the aerobic contribution to
ATP resynthesis increases. However, if the duration of the recovery periods is
insufficient to restore the metabolic environment to resting conditions, perform-
ance during successive work bouts may be compromised. Although the precise
mechanisms of fatigue during multiple sprint work are difficult to elucidate,
evidence points to a lack of available PCr and an accumulation of intracellular Pi
as the most likely causes. Moreover, the fact that both PCr resynthesis and the
removal of accumulated intracellular Pi are oxygen-dependent processes has led
several authors to propose a link between aerobic fitness and fatigue during
multiple sprint work. However, whilst the theoretical basis for such a relationship
is compelling, corroborative research is far from substantive. Despite years of
investigation, limitations in analytical techniques combined with methodological
differences between studies have left many issues regarding the physiological
response to multiple sprint work unresolved. As such, multiple sprint work
provides a rich area for future applied sports science research.

1. Activity Profiles of Multiple though the ratio of high- to low-intensity activities
Sprint Sports ranges from 1 : 6 to 1 : 14,[2,6,10-12] values are

clouded by limitations in the various methods used
The activity patterns of many sports are intermit- to determine these intensities.

tent in nature, fluctuating randomly from brief peri- In contrast to field sports, racquet sports (e.g.
ods of maximal or near maximal work to longer badminton, squash and tennis), due to the nature of
periods of moderate- and low-intensity activity. The the games, display much more consistent activity
duration of these events is often >1 hour and in the patterns. In general, high-intensity efforts (rallies)
case of team sports (e.g. basketball, hockey, rugby are on average 5–10 seconds in length depending on
and soccer), activity patterns are considerably influ- playing ability,[13-19] with work to rest ratios ranging
enced by player position.[1-6]

from 1 : 1 to 1 : 5. A summary of the results of
In field sports (e.g. hockey, rugby and soccer), several time-motion analyses of racquet sports is

distances covered during games range from 5000 to presented in table I.
11 000m depending on player position, skill level
and game duration.[1,2,7] The percentages of game- 2. Physiological Demands of Multiple
time spent in various forms of locomotion are diffi- Sprint Sports
cult to quantify due to methodological differences
between studies. However, the mean duration of Research into the physiological demands of mul-
high-intensity efforts is reported to be approximate- tiple sprint sports indicates that these events place
ly 4–7 seconds,[1,3,6,8] of which approximately 2 considerable demands on both aerobic and anaerob-
seconds is attributed to all-out sprinting.[1,3,9] Al- ic pathways, although the relative contribution from

 2005 Adis Data Information BV. All rights reserved. Sports Med 2005; 35 (9)
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Table I. Typical work to rest ratios experienced in racquet sports

Sport Playing level Mean rally time (sec) Work : rest ratio Reference

Squash Range of abilities 4.4–8.8 1 : 1 14

6.9–16.6 1 : 1 19

Badminton Range of abilities 4.2–4.9 1 : 2 14

National level 7.4 1 : 2 16

4.6 1 : 2 18

Tennis State level 10.2 1 : 1.7a 13

Range of abilities 4.0–4.3 1 : 5 14

College level 10.0 1 : 1.8a 15

a Does not include time spent changing ends.

each of these sources is an issue of some controver- field-based assessments of blood lactate during mul-
tiple sprint sports generally report relatively lowsy.[8,15,20-22] The average physiological response to
mean values of between 2 and 5 mmol/intermittent sporting events is reported to be similar
L,[1,3,10,16,18,19,25] peak values as high as 10 mmol/Lto that of prolonged continuous exercise, with mean
have been recorded.[12]exercise intensities of 60–75% maximum oxygen

uptake (V̇O2max),[10,12,13,16,19,23] and mean heart rates The limitations associated with field-based phys-
iological assessments of multiple sprint sports haveof 70–90% of maximum.[4,13-17,19] However, expres-
led many researchers to investigate this type of worksing intensity as an average value during a game is
in a laboratory setting.[26-31] These studies have typi-likely to mask the complexity of the physiological
cally examined brief (≤6-second) bouts of maximalprocesses that regulate this type of activity. Moreo-
work interspersed with relatively short (≤60-second)ver, field-based physiological assessments of multi-
stationary recovery periods. Although laboratory-ple sprint sports have several limitations. For in-
based investigations of intermittent work differ con-stance, direct field-based assessments of oxygen
siderably from the activity patterns experienced inuptake (V̇O2) are confounded by the inhibitory ef-
the field, they currently provide the best means offects of the portable devices currently available for
directly assessing the physiological response to thisthis type of assessment. Furthermore, this type of
type of activity. Before reviewing research into theassessment is only feasible in simulated match-play.
metabolic factors that may limit performance, it isOne way to address this problem has been to predict
important to consider the complex energetics associ-V̇O2 from heart rate data using laboratory-deter-
ated with this type of work.mined submaximal heart rate/V̇O2 relationships.

However, heart rate/V̇O2 relationships can be com-
3. The Energetics of Brief Maximal Workpromised during intermittent work due to factors

such as emotional stress, elevated levels of catecho-
lamines, and the accumulation of various metabolic 3.1 Adenosine Triphosphate
by-products.[10,13,16,24]

Energy for muscular work is obtained from theField-based assessments of blood lactate have
hydrolysis of ATP (equation 1).often been used to indicate anaerobic lactacid aden-

osine triphosphate (ATP) production. However,
blood lactate levels are only a reflection of the

ATP ADP + Pi + energy
ATPase

(Eq. 1)balance between lactate production and clearance.
Furthermore, sampling times are restricted to natural where ADP is adenosine diphosphate and Pi is inor-
breaks in matches or disruptions to standard match ganic phosphate. Within muscle, the human body
conditions and only reflect the level of activity dur- typically stores approximately 20–25 mmol/kg dry
ing the few minutes prior to sampling. Although muscle (dm) of ATP, which with peak ATP turnover

 2005 Adis Data Information BV. All rights reserved. Sports Med 2005; 35 (9)
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rates of approximately 15 mmol/kg dm/sec, is
enough to fuel 1–2 seconds of maximal work.[29,32,33]

Glycogen + 3 ADP + 3 Pi                     3 ATP
−+ 2 lactate  + 2 H +

As the store of ATP becomes depleted, ATP for (Eq. 3)
continued muscular work is resynthesised by the

ATP production from anaerobic glycolysis is ac-
integration of various metabolic processes.

tivated rapidly at the onset of maximal work reach-
ing peak rates of around 6–9 mmol ATP/kg dm/

3.2 Phosphocreatine
sec[33,35,37,38] after approximately 5 seconds.[39,40]

Phosphocreatine (PCr) is particularly important
during explosive activities when a high rate of ener- 3.4 Aerobic Metabolism
gy release is required (equation 2). The resynthesis
of ATP is driven by the reaction between PCr and During maximal work, aerobic ATP resynthesis
ADP. The reaction is catalysed by the enzyme crea- is achieved primarily through the oxidation of glu-
tine kinase and results in the formation of ATP and cose (equation 4).[34,41]

free creatine (Cr). C6H12O6 (glucose) + 6O 2 + 38 ADP 

+ 38 Pi                     6 CO2 + 6 H2O + 38 ATPPCr + ADP + H+                                     ATP + Cr
Creatine kinase  

(Eq. 4)
(Eq. 2) It is difficult to accurately assess the aerobic

Intramuscular PCr stores total approximately 80 contribution to a short bout of maximal work due to
mmol/kg dm.[29,32-34] During maximal work, PCr methodological problems associated with: (i) as-
degradation follows an exponential pattern of decay sessing the V̇O2 of the working muscles; (ii) deter-
(figure 1) with maximal turnover rates of approxi- mining the size of the active muscle mass; and (iii)
mately 9 mmol ATP/kg dm/sec,[35] largely depleting evaluating the contribution of oxygen released from
stores within 10 seconds. myoglobin. However, during the first 6 seconds of a

30-second maximal sprint, the mean rate of aerobic
3.3 Anaerobic Glycolysis ATP turnover has been estimated at 1.32 mmol

ATP/kg dm/sec (approximately 9% of the total ener-Anaerobic glycolysis involves the breakdown of
gy produced).[33]

glucose, mainly in the form of muscle glycogen, to
ATP and lactate (equation 3).

3.5 The Adenylate Kinase Reaction

During intense periods of work, when the re-
quired rate of ATP provision cannot be maintained
by the above energy pathways, ATP can be generat-
ed from pairs of ADP molecules. The reaction is
catalysed by the enzyme adenylate kinase and re-
sults in the formation of ATP and adenosine
monophosphate (AMP) [equation 5].

ADP + ADP ATP + AMP
Adenylate kinase  

(Eq. 5)
AMP is further deaminated to inosine

monophosphate (IMP) and ammonia in a reversible
reaction catalysed by the enzyme AMP deaminase
(equation 6).
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Fig. 1. Phosphocreatine (PCr) kinetics of the medial gastrocnemius
during 30 seconds of repeated maximal plantar flexions of the foot
determined from localised nuclear magnetic resonance imaging.
Open circles represent PCr as a percentage of resting values; bars
represent standard deviations (reproduced from Walter et al.,[36]

with permission).

 2005 Adis Data Information BV. All rights reserved. Sports Med 2005; 35 (9)



Physiological Response to Multiple Sprint Work 761

the integration of the aforementioned metabolic
pathways. The role of these pathways during multi-

AMP + H +                                      IMP + NH4
+

AMP deaminase
ple sprint work will be the focus of the next section(Eq. 6)
of this article.Although these reactions may temporarily reduce

the availability of adenine nucleotides for phospho-
4.1 Anaerobic Energy Provision During

rylation, the majority are resynthesised during re-
Multiple Sprint Work

covery via the purine nucleotide cycle. Moreover,
high-intensity training is reported to reduce the loss 4.1.1 Phosphocreatine
of adenine nucleotides during intense exercise.[42]

During a single short (5- to 6-second) maximal
sprint, PCr degradation is reported to account for

3.6 Summary approximately 50% of the total anaerobic ATP pro-
vision.[29,33,46] However, the PCr contribution duringDuring brief periods of maximal work, ATP pro-
repeated sprints is largely determined by the extentvision is maintained through the complex integra-
to which PCr stores are replenished during interven-tion of various metabolic processes. These processes
ing recovery periods. The recovery kinetics of PCrwork together to achieve peak ATP turnover rates of
have been examined in vivo (using 31P magneticaround 15 mmol ATP/kg dm/sec. However, as work
resonance spectroscopy) and in vitro (using musclebouts are repeated, as in many team sports, the
biopsies) in several investigations.[36,47-57] The con-metabolic response to subsequent work bouts is
sensus of opinion appears to be that PCr recoverydetermined by the duration of the intervening rest
kinetics are extremely complex, as reflected by largeperiods.
individual and between-protocol differences.

Analyses of PCr recovery kinetics under is-4. The Physiology of Multiple Sprint Work
chaemic conditions have demonstrated that PCr
resynthesis is achieved exclusively via aerobic ATPEarly investigations into the energetics of short
resynthesis.[48,51,53,55] Moreover, PCr recovery kinet-(≤10-second) bouts of intermittent work suggested
ics have been shown to be sensitive to manipulationsthat the ATP required to fuel contractile activity was
of oxygen availability (figure 2).[52,58] After submax-derived predominantly from aerobic metabo-
imal work, with minimal disruption to pH, PCrlism.[43,44] The theoretical basis for this conclusion
follows a monoexponential pattern of resynthesiswas that oxygen bound to myoglobin offset the
(figure 2), the time/rate constants of which are re-usual oxygen deficit that occurs at the onset of a

bout of exercise. This store would subsequently be
replenished during each recovery period, thereby
providing a large aerobic contribution to overall
energy production. However, the intensities of the
work bouts used in these investigations were consid-
erably less than maximal. In contrast, Margaria et
al.,[45] using intensities sufficient to exhaust subjects
within 30–40 seconds of continuous treadmill run-
ning, suggested that with sufficient recovery (≥25
seconds) the ATP required to fuel 10-second bouts
of ‘heavy’ intermittent work was derived predomi-
nantly from the degradation of PCr. However, this
conclusion was highly speculative, as PCr was not
measured in the study. It is now accepted that inter-
mittent bouts of brief maximal work are fuelled by
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Fig. 2. The influence of oxygen availability on phosphocreatine
(PCr) recovery kinetics of the gastrocnemius following 5 minutes of
repeated submaximal plantar flexions of the foot determined from
localised nuclear magnetic resonance imaging.[52]
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ATP/kg dm/sec.[29,46] At high glycolytic rates, the
concentration of muscle lactate increases to ex-
tremely high levels and the associated increase in
hydrogen ion (H+) concentration has often been
implicated as a cause of fatigue.[59-61] During recov-
ery, glycolysis is reportedly switched off[53,62,63] and
the return of pH to resting levels follows a
monoexponential pattern of resynthesis (figure 4)
with a half-time of approximately 9 minutes.[60,64]

The rate of glycolytic ATP provision is regulated
by the intricate interplay between many metabolic
factors (figure 5). During maximal intermittent
work, progressive changes in the metabolic environ-
ment lead to a gradual inhibition of glycolysis with
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Fig. 3. Phosphocreatine (PCr) recovery kinetics of the medial gas-
trocnemius following 30 seconds of repeated maximal plantar flex-
ions of the foot determined from localised nuclear magnetic
resonance imaging (reproduced from Walter et al.,[36] with permis-
sion).

repeated sprints.[29,33,65,66] For example, in the study
by Gaitanos et al.,[29] glycolysis accounted for 44%ported to provide an index of oxidative capaci-
of the total anaerobic ATP provision during the firstty.[56,57] However, following maximal work, PCr
sprint, whilst the corresponding value for the tenthrecovery kinetics are best described by a biexponen-
sprint was 16% (figure 6). Moreover, in four of thetial pattern of resynthesis (figure 3), the initial fast
subjects (n = 7), the glycolytic contribution to totalphase of which is reported to be largely unaffected
anaerobic ATP production during the tenth sprintby the concomitant drop in pH.[36,54,55]

was estimated to be zero.
Information on the influence of recovery duration

Various mechanisms have been postulated to ac-
on PCr resynthesis during short-duration maximal

count for the inhibition of glycolysis with repeated
intermittent work is sparse due to the invasive nature

sprints.[65] One suggestion is that glycolysis is im-
of muscle biopsy procedures and the fact that 31P

paired by the progressive depletion of muscle glyco-
magnetic resonance spectroscopy techniques cannot

gen stores that accompanies this type of work.[29,67]
as yet be used to examine the large muscle masses

Several studies have reported altered glycolytic
involved in sprint work. However, using 10 × 6-sec-

rates following glycogen manipulation.[68-70] In con-
ond maximal sprints (cycle ergometer), Gaitanos et

trast, other investigations report contradictory find-
al.[29] reported that 30-second recovery periods ena-

ings.[71-75] Another suggestion is that glycolysis is
bled PCr to make a substantial contribution (≥50%

impaired by the aforementioned progressive drop in
of the total anaerobic ATP provision) to ATP

pH. An accumulation of H+ is known to inhibit
resynthesis throughout each sprint. Furthermore, de-
spite a progressive decline in the pre-sprint concen-
tration of PCr throughout each trial, it is likely that
with resynthesis rates of around 1.3 mmol/kg dm/
sec, 30-second recovery periods would have enabled
PCr to continue to make a substantial contribution to
total ATP resynthesis beyond the final sprint.

4.1.2 Glycolysis

During a brief maximal sprint, the rapid drop in
PCr concentration is offset by the increased activa-
tion of glycolysis with the two processes combining
to maintain ATP turnover at a rate of 11–14 mmol

pH
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Fig. 4. Time course of muscle pH during passive recovery from 6
minutes of exhaustive dynamic exercise.[64]
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Fig. 5. Schematic representation of the anaerobic metabolic pathways of glycogenolysis/glycolysis and a number of potential regulators
(reproduced from Bangsbo,[65] with permission). 2-3-PG = 2-3-phosphoglycerate; ADP = adenosine diphosphate; AMP = adenosine
monophosphate; ATP = adenosine triphosphate; cAMP = cyclic adenosine monophosphate; CoA = coenzyme A; F-1,6-DP = fruc-
tose-1,6-diphosphate; F-2,6-DP = fructose-2,6-diphosphate; F-6-P = fructose-6-phosphate; G-1,6-DP = glucose-1,6-diphosphate; G-1-P =
glucose-1-phosphate; G-6-P = glucose-6-phosphate; IMP = inosine monophosphate; LDH = lactate dehydrogenase; NAD = nicotinamide-
adenine dinucleotide; NADH2 = the reduced form of NAD; PCr = phosphocreatine; PDHa = active form of pyruvate dehydrogenase; PDHP =
pyruvate dehydrogenase phosphatase; PEP = phosphoenolpyruvate; PFK = phosphofructokinase; Pi = inorganic phosphate; + indicates
positive regulators; – indicates negative regulators.

phosphorylase and phosphofructokinase (PFK), the citrate on PFK is reportedly small within the normal
key regulatory enzymes of glycogenolysis and gly- physiological range of 0.1–0.3 mmol/L.[83] Although
colysis.[76] However, the influence of pH on PFK is the progressive impairment of glycolysis during re-
reported to be negligible under normal physiological

peated maximal sprints may result from the inter-
conditions (pH ≥ 6.4).[77,78] A third possibility is that

play between several regulatory processes, furtherglycolysis is inhibited by an accumulation of
investigations are required before the precise mech-cytosolic citrate, since citrate also exerts an inhibito-

ry effect on PFK.[76,79-82] However, the influence of anisms of glycolytic inhibition can be identified.
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ATP utilisation
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Fig. 6. Anaerobic adenosine triphosphate (ATP) production (excluding energy provision related to lactate efflux) during the first and tenth
sprints of 10 × 6-second maximal sprints interspersed with 30-second recovery periods (reproduced from Gaitanos et al.,[29] with permis-
sion). PCr = phosphocreatine.

4.2 Aerobic Energy Provision During Multiple The MbO2 content of human skeletal muscle is
Sprint Work approximately 2 mmol O2/kg dm.[88,89] This store of

oxygen is rapidly desaturated at the onset of exercise
in response to a rapid drop in the intracellular partialAt the onset of a bout of intense exercise there is
pressure of oxygen.[90,91] At an intensity sufficient toa delay in V̇O2 by the working muscles (figure 7).
elicit V̇O2max, MbO2 is desaturated to approximate-However, if the duration of the work period is
ly 50% of resting values within 20 seconds.[90,91]limited to a few seconds, oxygen bound to my-
However, the sensitivity of MbO2 desaturation tooglobin (MbO2) may buffer the initial oxygen de-
exercise intensity is an issue of some controver-mand of the exercise.[84-86]

sy.[90,91]

During recovery, MbO2 stores are fully replen-
ished within 20 seconds of the cessation of exer-
cise.[91] With such a rapid rate of resaturation, it is
unlikely that the availability of oxygen from my-
oglobin would be a limiting factor during repeated
sprints. However, in vivo examinations of my-
oglobin function by means of 1H magnetic
resonance spectroscopy are a recent development
and clearly more research is required to fully estab-
lish the role of myoglobin during single and repeat-
ed bouts of maximal work.

Based on the above findings, Bangsbo et al.[34]

estimated the mean rate of aerobic ATP turnover

Time (sec)

0
0.0

0.2

0.1

0.3

0.4

0.6

0.5

0.7

0.8

20 3010 40 50 60

T
hi

gh
 V

O
2 

(L
/m

in
)

·

Fig. 7. Thigh oxygen uptake (V̇O2) during the first minute of a
3-minute bout of intense (~120% maximal V̇O2) knee-extensor ex-
ercise. Values are corrected for blood transit times (reproduced
from Bangsbo et al.,[87] with permission).
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during the first 5 seconds of a 3-minute bout of
intense (~120% V̇O2max) exercise to be 0.7 mmol
ATP/kg dm/sec. This value compares well with the
value of 1.3 mmol ATP/kg dm/sec calculated by
Parolin et al.[33] during the first 6 seconds of a
30-second maximal sprint and substantiates the
small (<10%) aerobic contribution to overall ATP
resynthesis during a single short maximal sprint.
However, as sprints are repeated, the level of aero-
bic ATP provision is reported to increase progres-
sively due to elevated and possibly accelerated V̇O2
kinetics.[29,33,66,92,93] For instance, during recovery
from a bout of high-intensity work, V̇O2 remains
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Fig. 9. Thigh oxygen uptake (V̇O2) during 2 × 3-minute bouts of
intense (~120% maximal V̇O2) knee-extensor exercise separated
by a 6-minute period of passive rest. Values are corrected for blood
transit times (reproduced from Bangsbo et al.,[34] with permission).
* indicates significantly (p < 0.05) different from first exercise bout.elevated for some time in order to restore the meta-

bolic environment to resting conditions through
plex and controversial one, which has at presentprocesses such as the replenishment of MbO2 stores,
only been examined during prolonged (≥180-sec-the resynthesis of PCr, the metabolism of lactate,
ond) bouts of submaximal work.[102] Moreover, withand the removal of accumulated intracellular
the exception of Bangsbo et al.,[34] investigationsPi.[94-97] If subsequent sprints are performed before
have relied on pulmonary measurements to establishV̇O2 has returned to resting levels, then the V̇O2 of
muscle V̇O2 kinetics with a tendency to focus onsuccessive sprints will be elevated (figure 8).
‘primary’ and ‘slow’ components of V̇O2, rather

The elevation in V̇O2 with repeated sprints ap- than the initial (0- to 20-second) ‘cardiodynamic’
pears to be accompanied by an accelerated V̇O2 at phase. Whilst the modulation of muscle V̇O2 kinet-
the onset of each work bout (figure 9). Although the ics associated with limb-lung transit effects has been
mechanisms responsible for this effect are poorly shown to be negligible during moderate-intensity
understood, corroborative research supports a pH- exercise,[103] the same may not be true during maxi-
mediated response leading to an increased Bohr shift mal work. Clearly, further investigations are re-
of the oxygen-haemoglobin dissociation curve, in- quired to establish the kinetics of V̇O2 during multi-
creased vasodilation in the working muscles, in- ple sprints.
creased recruitment of motor units, and increased Although the above investigations support a pro-
activity of pyruvate dehydrogenase.[34,98-101] Howev- gressive increase in aerobic ATP production during
er, the issue of accelerated V̇O2 kinetics is a com- repeated sprints, the level of aerobic ATP provision

will still be considerably less than the overall energy
demand.[29] As such, the major role of aerobic me-
tabolism during multiple sprint work appears to lie
in its exclusive contribution to the restoration of
homeostasis during intervening recovery periods.

5. Fatigue During Multiple Sprint Work

Muscular fatigue has been the focus of numerous
scientific investigations. At a recent symposium on
the subject, McCully et al.[104] defined fatigue as
“the development of less than the expected amount
of force as a consequence of muscle activation”.
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Fig. 8. Oxygen uptake (V̇O2) during 3 × 30-second bouts of maxi-
mal isokinetic cycling separated by 4-minute recovery periods (re-
produced from Putman et al.,[66] with permission).
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During multiple sprint work, fatigue is manifested
as a progressive decline in power output, the magni-
tude of which is largely determined by the duration
of the intervening recovery periods (figure
10).[31,105,106] However, during the first few bouts of
brief maximal intermittent work, fatigue can often
be masked by a potentiation effect (figure 11). This
effect is apparent in a number of investiga-
tions,[27,30,31,107,108] the mechanisms of which remain
largely unresolved.[109-112]

5.1 Mechanisms of Fatigue

M
ea

n 
po

w
er

 o
ut

pu
t (

W
)

Sprint no.

600

700

900

800

1000

432 651 987 151413121110

Fig. 11. Mean power output data during 15 × 5-second bouts of
maximal sprint cycling interspersed with 50-second stationary rest
periods (reproduced from Robinson et al.,[107] with permission).

During repeated bouts of maximal work, fatigue ATP at the required rate is supported by the fact that
is associated primarily with changes in the intramus- fatigue during multiple sprint work is associated
cular environment.[111,113-115] Although the precise with signs of energy deficiency, i.e. increased con-
aetiology of muscular fatigue remains an issue of centrations of IMP and hypoxanthine.[42,105,116] Since
much conjecture, causative factors include: energy provision during brief maximal sprints is
• a lack of available ATP for actin-myosin coup- maintained predominantly by anaerobic sources

ling, Na+/K+ pumping, and Ca2+ uptake by the (PCr degradation and glycolysis), deficiencies in
sarcoplasmic reticulum (SR); energy provision are likely to be associated with

• an inhibition of any of the above by various limitations in anaerobic metabolism.
metabolic by-products;

• alterations of excitation-contraction coupling, 5.2.1 Phosphocreatine Availability
from the action potential to Ca2+ release from the After a bout of intense/maximal work, the recov-
SR.[37] ery of force or power output follows a time-course

similar to that of PCr resynthesis (figure
5.2 Energy Metabolism and Fatigue 12).[49,59,114,117-120] As such, PCr availability is likely

to be a major limiting factor in the development of
The idea that muscular fatigue may be due to a fatigue during multiple sprint work. The link be-

failure of the metabolic processes to resynthesise tween PCr availability and fatigue is reinforced by
the fact that a number of investigations into multiple
sprint work have reported reductions in fatigue fol-
lowing a period of creatine supplementation (figure
13).[121-126] Although there are a number of conflict-
ing reports,[127-131] the above findings suggest that
the link between PCr availability and fatigue may be
more than just coincidental.

5.2.2 Glycogen Availability
In contrast to PCr, with a normal resting intra-

muscular concentration of approximately 300
mmol/kg dm,[29,37] glycogen availability is unlikely
to be a major limiting factor in the ability to main-
tain ATP provision during multiple sprint work.
This is particularly so given the glycolytic inhibition
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Fig. 10. Mean power output data during 10 × 6-second maximal
treadmill (non-motorised) sprints interspersed with either 30- or
60-second recovery periods (reproduced from Holmyard et al.,[31]

with permission). * indicates significantly (p < 0.05) different from
30-second recovery trial.
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that appears to accompany this type of activi- intermittent work, the drop in pH associated with
anaerobic glycolysis has often been implicated as aty.[29,33,65,66] However, alterations in glycogen avail-
causative agent of muscular fatigue.ability via dietary manipulation have been shown to

have a pronounced effect on the ability to maintain
5.3 Metabolite Accumulation and Fatiguehigh power outputs during the latter stages of repeat-

ed bouts of brief (6-second) high-intensity (>300%
5.3.1 AcidosisV̇O2max) work (figure 14).[67] Although under nor-
Several studies have shown strong correlationsmal circumstances glycogen availability appears to

between the decline in intramuscular pH and thehave little influence on the ability to maintain high
reduction in force or power output.[132-134] Moreover,

power outputs during short periods of brief maximal
a number of in vitro studies on skinned skeletal
muscle fibres have reported reductions in isometric
force and shortening velocity as a result of acido-
sis.[135-139] However, early investigations using
skinned fibre preparations were conducted under
relatively low temperatures (≤15°C) in an attempt to
maintain intracellular mechanical stability. In con-
trast, recent investigations using more advanced
techniques report that pH has little effect on contrac-
tile function under physiological tempera-
tures.[140-143] This lack of association between pH
and impaired contractile function is reinforced by
the fact that the time-course of the recovery of force
or power output following a bout of intense/maxi-
mal work is much faster than that of pH (see figure
12). Moreover, high power outputs have been ob-
tained under acidic conditions.[49,117-119] Although
fatigue during multiple sprint work cannot be ex-
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throughout each sprint (reproduced from Balsom et al.,[122] with
permission). * indicates significantly (p < 0.05) different from place-
bo.
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Fig. 14. The influence of glycogen availability on end pedalling frequency during the last 3 seconds of 15 × 6-second bouts of high-intensity
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revolutions per minute (rpm) [>300% maximal oxygen uptake] throughout each work period (reproduced from Balsom et al.,[67] with
permission). * indicates significantly (p < 0.05) different from high muscle glycogen trial.

5.3.2 Inorganic Phosphate Accumulationplained by a direct influence of acidosis on the
contractile machinery, acidosis may still impair per- Although early research focused on acidosis as
formance through indirect mechanisms such as its the most likely cause of muscular fatigue, recent
potential role in glycolytic inhibition. findings have led the focus of attention to switch to

that of intracellular Pi accumulation.[148-152] TheThe uncertainty regarding the extent to which
acidosis impairs multiple sprint performance is re- principle mechanism by which Pi appears to inter-
flected in the results of investigations into the fere with muscle function is by inhibiting Ca2+

ergogenic effects of sodium bicarbonate (NaHCO3) release from the SR. SR Ca2+ release controls actin-
ingestion. NaHCO3 has been used in a number of myosin cross-bridge interactions and thereby regu-
studies in an attempt to increase extracellular buffer- lates force production. The link between SR Ca2+

ing capacity and thereby reduce H+ accumulation in release and fatigue has been observed in a number of
muscle.[144] Using 10 ×10-second sprints (50-second
rest periods), Lavender and Bird[145] reported a sig-
nificant reduction in fatigue following NaHCO3 ad-
ministration, the magnitude of which increased with
successive sprints (figure 15). More recently, Bish-
op et al.[146] reported similar effects using 5 × 6-sec-
ond sprints (24-second rest periods). In contrast,
Gaitanos et al.[147] reported that NaHCO3 ingestion,
despite causing a shift in the acid-base balance of the
blood, had no significant effect on multiple sprint
(10 × 6-second sprint, 30-second rest) performance.
Whilst various methodological differences may
have contributed to the disparities between these
results, further investigations are clearly required to
fully establish the precise role, if any, of acidosis in
the development of muscular fatigue.
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investigations,[153-156] potential mechanisms of spersed with 30-second rest periods, was associated
which include a precipitation of calcium phosphate with an increased accumulation of blood lactate, a
within the SR and an inhibition of the SR Ca2+ reduced V̇O2, and an increased rate of muscular
release mechanism.[148,157-161] Although a Pi-linked fatigue (figure 16).[169] The authors hypothesised
impairment of SR Ca2+ release is currently consid- that oxygen availability mediated its effect on multi-
ered to be the major cause of high-intensity muscu- ple sprint performance by influencing: (i) the magni-
lar fatigue, further research is required to establish tude of the aerobic contribution to ATP resynthesis
the mechanism(s) of this response. during work periods; and/or (ii) the rate of PCr

resynthesis during intervening rest periods.
5.4 Summary

The idea that oxygen availability may have influ-
enced the aerobic contribution to each sprint is sup-This section has described how performance dur-
ported by evidence from a number of studies thating multiple sprint work can be influenced by many
oxygen availability has a significant influence on thefactors associated with energy metabolism and me-
rate of V̇O2 at the onset of high-intensity exer-tabolite accumulation. All in all, it appears that
cise.[170-173] Specifically, hyperoxic conditions resultfatigue during multiple sprint work is likely to be the
in a speeding of V̇O2 kinetics at the onset of exer-result of a spectrum of events rather than a single
cise, whilst hypoxic conditions have the oppositecausative factor, with metabolites such as Na+ and
effect. A faster on-transient V̇O2 response, as aK+ also having potential roles to play in its aetiolo-
result of enhanced oxygen availability, would re-gy. The final section of this article will focus on the
duce the magnitude of the oxygen deficit incurredinfluence of another potential performance modula-
during each sprint and thereby place less demand ontor during multiple sprint work, namely oxygen
anaerobic sources to maintain the required rate ofavailability, with particular focus on the influence of
ATP provision.aerobic/endurance training.

Although a modified aerobic contribution to ATP
6. The Influence of Oxygen Availability resynthesis during each sprint provides a possible
on Multiple Sprint Work explanation for the findings of Balsom et al.,[168,169]

the results can also be reconciled by the fact thatThe influence of oxygen availability on perform-
oxygen availability may have influenced the magni-ance during both submaximal and maximal work-
tude of the contribution to ATP resynthesis made byloads has been extensively studied using a wide

range of methodologies.[162-167] In general, hypoxic
conditions are associated with increased rates of
fatigue, whilst hyperoxic conditions have a contrast-
ing effect. These same effects are also evident in
studies that have examined the influence of oxygen
availability on multiple sprint work.[168,169] For ex-
ample, under conditions of enhanced oxygen availa-
bility (achieved via erythropoietin administration),
Balsom et al.[168] reported that the ability to maintain
performance during 15 × 6-second treadmill sprints
(~250% V̇O2max) interspersed with 24-second rest
periods, was associated with a reduced accumula-
tion of anaerobic metabolites (blood lactate and
hypoxanthine). In contrast, under hypoxic condi-
tions (hypobaric chamber), the ability to perform 10
× 6-second cycle sprints (~350% V̇O2max) inter-
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Fig. 16. Pedalling frequencies during the final second of 10 × 6-sec-
ond bouts of high-intensity (~350% maximal oxygen uptake) cycling
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PCr. In effect, the link between oxygen availability resist fatigue during this type of work.[26,50,92,174-177]

and PCr recovery kinetics observed by Haseler et Although the theoretical basis for this assumption is
al.[52] and Idström et al.[58] (see figure 2) is likely to compelling, corroborative scientific evidence is far
have influenced the magnitude of the PCr contribu- from substantive.
tion to ATP turnover during each sprint. A higher

6.1 Endurance Training and On-TransientPCr availability at the onset of each sprint as a result
Oxygen Uptake Kineticsof hyperoxia would reduce the demand on anaerobic

glycolysis to maintain the required rate of ATP
The influence of endurance training on V̇O2 ki-

turnover.
netics at the onset of exercise has been the focus of a

In addition to the hypotheses put forward by number of investigations.[178-183] Although findings
Balsom et al.,[168,169] oxygen availability may have are once again limited by a lack of experimentation
influenced multiple sprint performance via its influ- using maximal workloads and the use of pulmonary
ence on Pi accumulation. Oxygen availability has gas exchange data to determine the V̇O2 response,
been shown to influence the rate of Pi accumulation research to date suggests that endurance training
during exercise (figure 17) and recovery.[58,166] As leads to an elevation in V̇O2max and a possible
such, the increased rate of fatigue observed by Bal- speeding of on-transient V̇O2 kinetics.
som et al.[169] under hypoxic conditions may have
been the result of a more rapid accumulation of Pi 6.2 Endurance Training and
during each sprint, and a reduced rate of removal Phosphocreatine Recovery Kinetics
during recovery.

In contrast to the above, information on the influ-Although the investigations by Balsom et
ence of endurance training on PCr recovery kineticsal.[168,169] provide a valuable insight into the influ-
is sparse. However, McCully and Posner[184] report-ence of oxygen availability on multiple sprint per-
ed enhanced PCr recovery kinetics following 2formance, the intensities used were less than the
weeks of endurance training. Moreover, a number ofmaximal intensities often experienced in many
investigations have reported enhanced PCr recoverysporting activities. Nevertheless, the influence of
kinetics in endurance-trained athletes comparedoxygen availability on multiple sprint performance
with sprinters and untrained controls.[56,185-188] De-has led several authors to suggest that aerobic/en-
spite the considerable amount of evidence support-durance training may convey an enhanced ability to
ing a link between endurance training status and PCr
recovery kinetics, attempts to establish a relation-
ship between V̇O2max and PCr recovery kinetics
show some conflicting results. For example, Cooke
et al.[50] reported no significant differences in PCr
resynthesis rates between individuals grouped on
the basis of whether or not they possessed a high
(mean V̇O2max: 64.4 ± 1.4 mL/kg/min) or a low
(mean V̇O2max: 46.6 ± 1.1 mL/kg/min) V̇O2max. In
contrast, Takahashi et al.[56] reported significant
negative correlations between V̇O2max and the time-
constants for PCr resynthesis following light, mod-
erate, severe, and exhausting exercise. Moreover,
Bogdanis et al.[92] reported that the resynthesis of
PCr was strongly correlated (r = –0.89; p < 0.01)
with endurance fitness as determined from the per-
centage of V̇O2max corresponding to a blood lactate
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concentration of 4 mmol/L. Individual differences in recovery kinetics, longitudinal investigations on the
PCr recovery kinetics combined with the use of topic are sparse yet nonetheless confusing. For ex-
relatively low subject numbers may account for ample, Evans and Cureton[194] reported that 6 weeks
many of the discrepancies between the results of of endurance training had no significant effect on
these investigations. the rate of blood lactate clearance during passive

recovery from exhaustive exercise. In contrast,
6.3 Endurance Training and Fukuba et al.[195] reported that 13 weeks of endur-
Lactate Clearance ance training improved lactate clearance capacity as

determined from the ‘slow’ rate constant (γ2) of the
One of the ways in which endurance training biexponential blood lactate recovery curve. Moreo-

could potentially enhance multiple sprint perform- ver, Donovan and Pagliassotti[196] reported that en-
ance is by increasing the rate of lactate clearance durance-trained rats achieved higher rates of blood
during intervening rest periods. However, whilst lactate clearance following exogenous lactate infu-
some cross-sectional studies report that endurance- sion. Although the results of Evans and Cureton[194]

trained athletes possess an enhanced blood lactate are potentially flawed by the use of monoexponen-
clearance capacity,[189-191] others have yielded con- tial rather than biexponential curves to describe
flicting results.[192,193] Methodological differences blood lactate recovery kinetics, the precise influence
such as the timing of the lactate samples, and the use of endurance training on blood lactate clearance
of monoexponential rather than biexponential remains equivocal.
curves to describe lactate recovery data may account
for some of these discrepancies. Moreover, in most 6.4 Endurance Training and Inorganic
cases, differences in lactate clearance capacities be- Phosphate Kinetics
tween endurance-trained and untrained individuals

A final way in which endurance training couldhave been assessed during recovery from exercise at
potentially enhance multiple sprint performance isthe same relative intensity, rather than from the
by speeding off-transient Pi kinetics. However,same level of blood lactate accumulation. Although
whilst Pi accumulation is currently considered to beBassett et al.[192] attempted to address this issue by
one of the major causes of muscular fatigue, re-adjusting individual workloads to produce the same
search into the influence of endurance training on Pilevel of blood lactate, subtle differences in peak
accumulation is sparse. In fact, the only study to datelactate between the groups (figure 18) supports the
that appears to have investigated this topic is a cross-need for further research.
sectional study by Yoshida and Watari[188] that ex-In contrast to the number of cross-sectional stud-
amined differences between endurance-trained ath-ies on the influence of endurance training on lactate
letes and untrained controls in their metabolic re-
sponses to repeated bouts of work. Although the
authors reported no significant between-group dif-
ferences in on-transient Pi kinetics, off-transient Pi
kinetics were significantly faster in endurance-
trained athletes than in untrained controls (figure
19).

6.5 Endurance Training and Multiple
Sprint Performance

Although the results of investigations into the
mechanisms by which endurance training may en-
hance multiple sprint performance are far from con-
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et al.,[192] with permission).
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to –0.56.[174,176,198,199] Although methodological dif-
ferences may account for many of the discrepancies,
the influence of protocol variation on the magnitude
of those discrepancies is at present unknown.

7. Conclusions

The term ‘multiple sprint work’ provides a gener-
al description of the complex activity patterns exper-
ienced in many field and court sports. Research into
the energetics of this type of activity supports a
predominantly PCr-mediated ATP provision during
work periods and an exclusively aerobic process of
recovery. Whilst the ability to maintain multiple
sprint performance may be attributed to a multitude
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Fig. 19. Inorganic phosphate (Pi) kinetics during 4 × 2-minute bouts
of repeated knee flexion exercise (20 kg/min) interspersed with
2-minute stationary rest periods in endurance-trained runners and
untrained controls (reproduced from Yoshida and Watari,[188] with
permission). * indicates significantly (p < 0.05) different from un-
trained controls.

of factors, PCr availability and intracellular Pi ac-
cumulation appear the most likely determinants.clusive, there is some direct evidence to support the
Moreover, the fact that both PCr resynthesis andidea that endurance training may enhance perform-
intracellular Pi removal (via ADP phosphorylation)ance during this type of work. For example, Hamil-
are oxygen-dependent processes suggests that a highton et al.[30] reported that despite lower measures of
level of aerobic fitness may convey an enhancedpeak power output, compared with games players
ability to resist fatigue during this type of work.(mean V̇O2max: 52.5 ± 4.9 mL/kg/min), endurance-
However, whilst there is some evidence to suggesttrained athletes (mean V̇O2max: 60.8 ± 4.1 mL/kg/
that endurance-trained athletes display an enhancedmin) had an enhanced ability to resist fatigue during
ability to maintain multiple sprint performance, fur-10 × 6-second maximal sprints interspersed with
ther research is required to confirm the mechanisms30-second rest periods. Moreover, this enhanced
of this response. Despite over 40 years of research,ability to resist fatigue was associated with higher
many issues regarding the physiological response torates of V̇O2 and lower peak blood lactate concen-
multiple sprint work remain unresolved. In particu-trations. More recently, Helgerud et al.[197] ex-
lar, mechanisms of fatigue and the factors that regu-amined the effects of 8 weeks of aerobic interval
late the same require further investigation. A greatertraining on soccer performance. As a result of the
understanding of the physiological response to mul-training, total match distance increased by 20%,
tiple sprint work is likely to help athletes andnumber of sprints increased by 100%, involvement
coaches improve performance in many sports.with the ball increased by 24%, and average work
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mittent exercise: effect of recovery duration. Int J Sports Med 126. Yquel RJ, Arsac LM, Thiaudière E, et al. Effect of creatine
1992; 13 (7): 528-33 supplementation on phosphocreatine resynthesis, inorganic

 2005 Adis Data Information BV. All rights reserved. Sports Med 2005; 35 (9)



776 Glaister

phosphate accumulation and pH during intermittent maximal 146. Bishop D, Edge J, Davis C, et al. Induced metabolic alkalosis
exercise. J Sports Sci 2002; 20 (5): 427-37 affects muscle metabolism and repeated-sprint ability. Med Sci

Sports Exerc 2004; 36 (5): 807-13127. Barnett C, Hinds M, Jenkins DG. Effects of oral creatine supple-
147. Gaitanos GC, Nevill ME, Brooks S, et al. Repeated bouts ofmentation on multiple sprint cycle performance. Aust J Sci

sprint running after induced alkalosis. J Sports Sci 1991; 9 (4):Med Sport 1996; 28 (1): 35-9
355-70128. Dawson B, Cutler M, Moody A, et al. Effects of oral creatine

148. Allen DG, Kabbara AA, Westerblad H. Muscle fatigue: the roleloading on single and repeated maximal short sprints. Aust J
of intracellular calcium stores. Can J Appl Physiol 2002; 27Sci Med Sport 1995; 27 (3): 56-61
(1): 83-96129. Delecluse C, Diels R, Goris M. Effect of creatine supplementa-

149. Dahlstedt AJ, Katz A, Wieringa B, et al. Is creatine kinasetion on intermittent sprint running performance in highly
responsible for fatigue? Studies of isolated skeletal muscletrained athletes. J Strength Cond Res 2003; 17 (3): 446-54
deficient in creatine kinase. FASEB J 2000; 14 (7): 982-90

130. Leenders NM, Lamb DR, Nelson TE. Creatine supplementation
150. Dahlstedt AJ, Westerblad H. Inhibition of creatine kinaseand swimming performance. Int J Sport Nutr 1999; 9 (3): 251-

reduces the rate of fatigue-induced decrease in tetanic Ca2+ in62
mouse skeletal muscle. J Physiol 2001; 533 (3): 639-49

131. McKenna MJ, Morton J, Selig SE, et al. Creatine supplementa- 151. Fryer MW, Owen VJ, Lamb GD, et al. Effects of creatine
tion increases muscle total creatine but not maximal intermit- phosphate and Pi on Ca2+ movements and tension develop-
tent exercise performance. J Appl Physiol 1999; 87 (6): 2244- ment in rat skinned skeletal muscle fibres. J Physiol 1995; 482
52 (1): 123-40

132. Cady EB, Jones DA, Lynn J, et al. Changes in force and 152. Kabbara AA, Allen DG. The role of calcium stores in fatigue of
intracellular metabolites during fatigue of human skeletal mus- isolated single muscle fibres from the cane toad. J Physiol
cle. J Physiol 1989; 418: 311-25 1999; 519 (1): 169-76

133. DeGroot M, Massie BM, Boska M, et al. Dissociation of [H+] 153. Allen DG, Lee JA, Westerblad H. Intracellular calcium and
from fatigue in human muscle detected by high time resolution tension during fatigue in isolated single muscle fibres from
31P-NMR. Muscle Nerve 1993; 16 (1): 91-8 Xenopus laevis. J Physiol 1989; 415: 433-58

134. Miller RG, Boska MD, Moussavi RS, et al. 31P nuclear magnet- 154. Baker AJ, Kostov KG, Miller RG, et al. Slow force recovery
ic resonance studies of high energy phosphates and pH in after long duration exercise: metabolic and activation factors in
human muscle fatigue: comparison of aerobic and anaerobic muscle fatigue. J Appl Physiol 1993; 74: 2294-300
exercise. J Clin Invest 1988; 81 (4): 1190-6 155. Gyorke S. Effects of repeated tetanic stimulation on excitation-

135. Chase PB, Kushmerick MJ. Effects of pH on contraction of contraction coupling in cut muscle fibres of the frog. J Physiol
rabbit fast and slow skeletal muscle fibers. Biophys J 1988; 53 1993; 464: 699-710
(6): 935-46 156. Westerblad H, Lee JA, Lamb AG, et al. Spatial gradients of

intracellular calcium in skeletal muscle during fatigue.136. Cooke R, Franks K, Luciani GB, et al. The inhibition of rabbit
Pflugers Arch 1990; 415 (6): 734-40skeletal muscle contraction by hydrogen ions and phosphate. J

157. Duke AM, Steele DS. Mechanisms of reduced SR Ca2+ releasePhysiol 1988; 395: 77-97
induced by inorganic phosphate in rat skeletal muscle fibers.137. Godt RE, Nosek TM. Changes of intracellular milieu with
Am J Physiol 2001; 281: C418-29fatigue or hypoxia depress contraction of skinned rabbit skele-

158. McLester Jr JR. Muscle contraction and fatigue: the role oftal and cardiac muscle. J Physiol 1989; 412: 155-80
adenosine 5’-diphosphate and inorganic phosphate. Sports138. Kentish JC, Palmer S. Effect of pH on force and stiffness in
Med 1997; 23 (5): 287-305skinned muscles isolated from rat and guinea-pig ventricle and

159. Posterino GS, Dutka TL, Lamb GD. L(+)-lactate does not affectfrom rabbit psoas muscle [abstract]. J Physiol 1989; 410: 67P
twitch and tetanic responses in mechanically skinned mamma-139. Metzger JM, Moss RL. Greater hydrogen ion-induced depres-
lian muscle fibres. Pflugers Arch 2001; 442 (2): 197-203sion of tension and velocity in skinned single fibres of rat fast

160. Stackhouse SK, Reisman DS, Binder-Macleod SA. Challengingthan slow muscles. J Physiol 1987; 393: 727-42
the role of pH in skeletal muscle fatigue. Phys Ther 2001; 81

140. Bruton JD, Lannergren J, Westerblad H. Effects of CO2-induced (12): 1897-903
acidification on the fatigue resistance of single mouse muscle

161. Westerblad H, Allen DG, Lännergren J. Muscle fatigue: lacticfibers at 28 degrees C. J Appl Physiol 1998; 85 (2): 478-83
acid or inorganic phosphate the major cause? News Physiol Sci

141. Pate E, Bhimani M, Franks-Skiba K, et al. Reduced effect of pH 2002; 17: 17-21
on skinned rabbit psoas muscle mechanics at high tempera- 162. Cymerman A, Reeves JT, Sutton JR, et al. Operation Everest II:
tures: implications for fatigue. J Physiol 1995; 486 (3): 689-94 maximal oxygen uptake at extreme altitude. J Appl Physiol

142. Westerblad H, Bruton JD, Lännergren J. The effect of intracellu- 1989; 66 (5): 2446-53
lar pH on contractile function of intact, single fibres of mouse 163. Eiken O, Tesch PA. Effects of hyperoxia and hypoxia on
muscle declines with increasing temperature. J Physiol 1997; dynamic and sustained static performance of the human quad-
500 (1): 193-204 riceps muscle. Acta Physiol Scand 1984; 122 (4): 629-33

143. Wiseman RW, Beck TW, Chase PB. Effect of intracellular pH 164. Fulco CS, Lewis SF, Frykman PN, et al. Muscle fatigue and
on force development depends on temperature in intact skeletal exhaustion during dynamic leg exercise in normoxia and hy-
muscle from mouse. Am J Physiol 1996; 271 (3): C878-86 pobaric hypoxia. J Appl Physiol 1996; 81 (5): 1891-900

144. Linderman JK, Gosselink KL. The effects of sodium bicarbo- 165. Hogan MC, Kohin S, Stary CM, et al. Rapid force recovery in
nate ingestion on exercise performance. Sports Med 1994; 18 contracting skeletal muscle after brief ischemia is dependent
(2): 75-80 on O2 availability. J Appl Physiol 1999; 87 (6): 2225-9

145. Lavender G, Bird SR. Effect of sodium bicarbonate ingestion 166. Hogan MC, Richardson RS, Haseler LJ. Human muscle per-
upon repeated sprints. Br J Sports Med 1989; 23 (1): 41-5 formance and PCr hydrolysis with varied inspired oxygen

 2005 Adis Data Information BV. All rights reserved. Sports Med 2005; 35 (9)



Physiological Response to Multiple Sprint Work 777

fractions: a 31P-MRS study. J Appl Physiol 1999; 86 (4): 184. McCully KK, Posner JD. Measuring exercise-induced adapta-
1367-73 tions and injury with magnetic resonance spectroscopy. Int J

Sports Med 1992; 13: S147-9167. Peltonen JE, Rantamaki J, Niittymaki SP, et al. Effects of
oxygen fraction in inspired air on rowing performance. Med 185. Laurent D, Reutenauer H, Payen JF, et al. Muscle bioenergetics
Sci Sports Exerc 1995; 27 (4): 573-9 in skiers: studies using NMR spectroscopy. Int J Sports Med
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